Degrees of Truth: the formal logic of classical and quantum
probabilities as well as fuzzy sets.

Logic is the study of reasoning. A language of propositions is fundamental to
this study as well as true and false, the two primitive ‘truth-values’ assigned
to propositions to express their meaning.

This paper is concerned with uncertain reasoning. Numbers including for
example probabilities, can be used to express different ‘levels’ of uncertainty,
here called degrees of truth. In this paper they will be derived from the
primitives of traditional logic, from the two truth-values and from traditional
laws of reasoning.

In section 1 truth-functional propositional logic £ is developed from first
principles and in section 2 the algebra of this logic is shown to be a slight
generalisation of a Boolean algebra. Following sections show how this can be
developed into a many-valued modal logic that expresses degrees of truth
including classical and quantum probabilities as well as fuzzy sets. The
Hilbert Space representation of quantum theories is discussed in section 8.

1. Formal logic £

In formal logic mathematical methods are applied to the study of reasoning.
Propositions of a language L are represented by variables, L = {p, q, r...}, and
the truth-values true and false by symbols t and f respectively. Valuations are
then introduced as functions assigning truth-values to propositions.

Defn 1.1: (valuation h, set H of £)
A (simple) valuation h of the logic £ with language L, is a structure-
preserving function from (simple) propositions to truth-values,
h: L > {t, f}. Each such h is in H, the set of all valuations of logic <.

So simple valuations map simple propositions to the two truth-values in a
way that respects their propositional relations. Generally no propositional
relations over L are assumed in order to keep the discussion general, but
these can be important as later discussion of mechanical theories shows.

Although every valuation h assigns truth-values to propositions, not every
proposition in L must take a value. It is not assumed that the entire set L is
the domain of every valuation h for several reasons. First this is not required
by first principles, for a language expresses meaning when only some
propositions have truth-values. Second, propositional relations on L. may not
allow bivalent assignments of the two truth-values, so assuming bivalence
would prevent such languages being studied. And third, in a logic of
uncertainties it is inappropriate to assume that every proposition is always
true or false. Probabilities for example have particular interest in just those



cases when truth-values are not assigned. For all these reasons truth-value
“gaps” are allowed in logic £.

Although only two truth-values are primitive to logic, three distinct relations
between propositions and valuations can be derived from these and so there
are three corresponding “logical values” in the truth-functional logic £.

Defn 1.2: (valuation relations true, false and unassigned, logical values t, f, u)
For any h in H and p in L, there are three valuation relations: proposition p
is truein hifh(p) =t, pis false in h if h(p) =f, or p is unassigned by h
otherwise ie. when h(p) # t and h(p) # f in which case we write h(p) = u.

So proposition p may be true, false or unassigned in h, with corresponding
logical values t, f and u. Although there are only two primitive truth-values a
third logical value is derived to express the case where neither truth-value is
assigned. It follows that each valuation h: L -> {t, f} corresponds to a 3-valued
mapping h: L -> {t, f, u} which has the whole of L in its domain. Since these
two functions exactly correspond both will be called a valuation and will be
represented by the same symbol h in H, without ambiguity.

Logical connectives allow simple propositions to be combined into complex
ones. By definition the truth-value of a truth-functional connective in any
valuation h is determined by the truth-value of its constituents in h.
Traditional connectives are defined to satisfy the Laws of Thought. These
include binary connectives A, V, D, = for conjunction, disjunction, implication
and equivalence respectively as well as a single unary connective - for
negation. The truth-functional logic £ has the same traditional binary
connectives, but having truth-value gaps allows two different unary truth-
functional connectives for “not” to be distinguished, — for negation and ~ for
denial.

Formally the alphabet of logic £ includes the variables for simple
propositions, L = {p, q, ...}, the connective symbols A, V, D, =, =, ~ as well as
brackets. Well-formed formulae (wffs) of the logic £ representing all simple
or complex propositions are derived from these by the following rules.

Defn 1.3: (Rules of formation defining wffs of £)
The well-formed formulae (wffs) of logic £ are derived from propositional
variables by Induction:
i) If p is a simple propositional variable, p € L, then p is a wff of £
ii) where o is a wff of £ so too are —o and ~a
iii) where o, f§ are wffs of £ sotooarea AB,aVp,aDfB,a=p
iv) normal conventions of bracketing apply

So any p in L representing a simple proposition of the logic £ is a wff, and

other wffs representing complex propositions are defined by induction from
the traditional binary and two unary connectives. Variables a, §3, y,... are now
assumed to range over the well-formed formulae of logic £, and according to



this definition (a A (B Vy), p D p,and a. = ( A —y) for example are wffs
representing complex propositions of Z.

The truth-functional connectives are defined by rules showing how any
valuation of simple constituents determine the value of a complex wff in this
valuation. These are conveniently expressed by logical or “truth” tables
where each row corresponds to a different valuation.

Table 1.1: Valuation rules defining binary connectives in £
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Table 2.2: Valuation rules defining unary connectives in £

These are the binary connectives of £3 the 3-valued logic of Lukasiewicz,
with the two different available unary connectives. Table 2.2 i) defines

negation —, in terms of opposite truth-values while ii) defines denial, ~, in
terms of failure to be true.

Rules defining connectives of £ ensure as with traditional bivalent logic, that
Boolean “Laws of Thought” are satisfied. The following formulae are logically
true in Z, ie. they are true in every valuation of £ as a construction of
appropriate logical tables will show.

Defn: 1.4 (Boolean Laws of Thought)
Associative: (a A(BAY)= (aAP)AY; (aV(BVY)= (aVP)VY;
Commutative: (a AB)=(BA); (aVP)=(pVa);
Distributive: a A(BVY)=(aAB)V(aAY);aV(BAY)= (aVP)A(aVYy)
Identity: o D a
Double Negation: o= - -«
Excluded Middle: a vV ~a =1

Satisfying the Commutative Law for example means that the order of
constituents in a conjunction or disjunction does alter its valuation, which
can be seen by Table 1.1 i) and ii), for example a is true and {3 false in a



valuation the disjunction is true, and this is the same when § is true and o
false, and likewise for the other cases. In a similar way one can create tables
to show the other Laws are satisfied by the binary connectives. The two
different Laws of Thought for “not” are traditionally supposed both to hold
negation, which is the only unary connective in bivalent logic. However logic
< has two different connectives and each is characterised by a different law,

as the following table shows.

Table 1.3: Laws of Double Negation and Excluded Middle in £

By table i) = -a has the same valuation as a in every valuation h, ie. the
opposite of an opposite truth-value is the original one, (- -a = a) is logically
true in £ and the Law of Double Negation holds for this connective. By table
ii) either a proposition or its denial must always be true, so (o V ~a) is
logically true and the Law of Excluded Middle holds for this connective.

Since the truth-functional connectives in logic £ defined by these tables
above, satisfy the same Boolean Laws as the traditional bivalent
propositional calculus, these two logics are essentially similar. One can check
from the definitions above that they actually do coincide where only truth-
values are assigned, ie. where only truth-values t and f are assigned then the
definition of connectives is the same. In the next section algebraic methods
will be used to further compare these two different logics.

Formally the valuation rules for connectives extend any simple valuation h of
language L to a mapping from complex propositions as well, ie. any simple
valuation h: L —> {t, f} is extended to, h: £ -> {t, f}, and so the that the 3-
valued map h: L —> {t, f, u} is also extended to h: £ -> {t, f, u}. However since
this extension is well-defined and uniquely determined for each simple
valuation h, the distinction between simple and complex valuations is not
maintained, with symbols h and H used for either.

Since logic £ coincides with the traditional propositional calculus where
bivalence is assumed, the 3-valued logic is more general than traditional
bivalent logic. It is also more expressive since there are now two different
unary operations for “not”, making a distinction that is impossible to make
when logic is bivalent, between a proposition being false and having no truth-
value. The logic £ is also capable of expressing its own valuation relations as
the following connectives show.



Table 1.4: Connectives T, F, U expressing valuation relations:

o (i) Ta 1) Fo i) Uo

By table i) logic £ can express the truth of a proposition for example by using
connective T, which is true only when the constituent proposition is true and
false otherwise. Similarly F and U express valuation relations false and
unassigned respectively.

Further differences between logic £ and the bivalent propositional calculus
will now be discussed algebraically.

2. The algebra of logic £

Algebra can simplify the representation of logical properties. For all
propositions that are logically equivalent, ie. that share all valuation
relations, are represented by a single element of an algebra. Logical
connectives are then represented by operations among these elements,
making their properties clear.

Alogic based on traditional laws of reasoning, such as bivalent propositional
logic or the 3-valued logic £, are represented by a lattice. It is useful to
review the definition of this structure that can be expressed in two different
ways. First a lattice can be defined as a partially ordered set with the special
property that any two elements have upper and lower bounds in the set.
Secondly it can be defined as a particular kind of algebra.

Defn 2.1: (poset, lattice, < A, <>, <A, A,V >)
i) Ais a partially ordered set (poset) <A, <>, if relation < is a partial ordering
i.e. reflexive, a < a for every a in A; transitive,ifa<b and b < cthena < ¢;
and antisymmetric, ifa<band b <athena=b.
ii) A lattice is a partially ordered set in which every pair of elements a, b in
A have a lattice meet A (least upper bound) and join V (greatest lower
bound) respectively in Al
iii) A lattice is an algebra 4= <A, A, V > where operations A, V are defined
for any elements of A and satisfy the commutative, absorptive and
associative laws. A partial ordering < on »# can be defined by setting a < b iff

a=(aAb)andb=(aVb).

So a lattice has operations meet and join defined among all its elements and
these satisfy the Laws of Thought for binary operations. A partial ordering



relation, which has the important properties of set inclusion and hence
deduction, can be defined.!

Some special properties will be important.

Defn 2.2: (bounded, distributive lattice; Boolean algebra)
i) a bounded lattice has universal upper and lower bounds, 1 and 0
respectively,ie.a< 1,0 < afor everyain A.
ii) a distributive lattice has meet and join that satisfy the distributive laws
iii) a Boolean algebra is a distributive lattice <A, A, V,’, 1, 0 > in which every
element has an orthogonal-complement, ie. an operation ’ where a” = a and
ava =1,ana =0.

So a bounded lattice has 1 and 0 elements that lie “above” and “below” all
other elements respectively, with respect to the partial ordering. A
distributive lattice satisfies the distributive identities and a Boolean algebra
is a distributive lattice in which every element has an orthogonal-
complement.

Propositional logic £ is represented by its Lindenbaum-Tarksi algebra.ii

Defn 2.3: (algebra # of £, equivalence classes [a])
The (representative or Lindenbaum-Tarski) algebra # of logic £ is
A4 =<A, AV, 1’ >where elements in A are equivalence classes of
propositions a = [a] = {y: a =y is logically true in .Z} and the operations
represent logical connectives,ie.aAb=[aAB];avb=[aVB];al=[-a];
and a’ = [~al].

The operations on # are well-defined because they do not depend on the
choice of proposition representing an equivalence class, a result which
follows from the conditions defining logical connectives and from the fact
that propositions in the classes are logically equivalent.?

[t is well-known that the algebra representing traditional 2-valued
propositional calculus is a Boolean algebra, a result which follows because
the connectives have been defined to satisfy the Boolean Laws.v The binary
connectives of £ are similarly defined and so they too are represented by
operations of a distributive lattice. In this sense the deductive structure of
logic £ is entirely traditional.

However the two different unary connectives of logic £ mean the algebra #
of £ is not a Boolean algebra but instead has two distinct unary operations.

Result 2.1: The algebra # =< A, A, V, ‘, L > representing logic £ is a distributive
lattice with orthogonal and complement.
Proof: By discussion above binary operations are those of a distributive
lattice. Operation L representing negation is an orthogonal because since
Double negation holds, - -a = a (by table above) and so [a] LL = [--a] =



[a] and so by definition L is an orthogonal on 4. Operation ‘ representing
denial is a lattice complement because since Excluded Middle holds

(o V ~a) is logically true (by table above) and so [a] V [a] = [aV ~a] =1
and by definition ‘is a lattice complement and #=<A, A, V, <, 1, >isa
distributive lattice with orthogonal and complement.

Algebra # of logic £ is thus an interesting generalisation of Boolean algebra
in which all operations are Boolean, but instead of a single ortho-complement
the algebra has separate orthogonal and complements. Algebra # is a
distributive lattice with an orthogonal to represent negation and a lattice
complement representing denial. The change from 2-valued to 3-valued logic
is a generalisation that retains every traditional law.

In fact this algebra is relatively Boolean in an interesting sense.

Result 2.2: The algebra#=<A, AV, , L >representing logic £ is relatively
Boolean in the sense of being relatively ortho-complemented: any element a
of # has an orthogonal-complement with respect to a subalgebra of #4.
Proof: Each element a in A determines a set Ca the logical context or scope
of a which is the set of equivalence classes containing propositions “above”
(aAal)in#and “below” (aVval),soCa=[Ca]={y: for some 3 in.£both
(aA=0a)DBand D (aV —a) are logically true in £ and so isy = 3}. It
follows from properties of the logical connectives that Ca is closed with
respect to the operations and clearly by construction al is not only an
orthogonal but also a complement in this subsystem.

So each equivalence class of propositions determines a subsystem of
elements with respect to which the class representing its negation has the
traditional properties of a Boolean ortho-complement. This shows there is a
natural sense of “logical relevance” or “context” among propositions, in the 3-
vaued logic or equivalently a new sense of the “scope” of connectives, that
simply does not occur in bivalent propositional calculus.

Defn 2.4: (Logical context or relevance)
For any wff ain £Zis Ca ={f inZ: (o A —=a) D p logically true in £}. Ca is the
logical context of o, and any f3 in Ca is logically relevant to o.

It follows from logical laws (De Morgan) that in this case p D (o V —=a) is also
logically true, ie the propositions logically relevant to o are those logically
implied by the conjunction of o and its negation and logically imply the
disjunction of these propositions. Within this subsystem of propositions both
senses of “not” will coincide and so this subsystem is entirely traditional.

Result 2.2 appears to be missed in discussions such as Rasiowa’s of the
algebraic representation of the Lukasiewicz logic. Yet this result shows
clearly the close relationship between this logic £ and the bivalent traditional
2-valued propositional calculus. The deductive structure of the two logics is
the same since conjunction, disjunction and implication are in both cases



represented by the operations and relations of a distributive lattice. “Not” is
the same in both logics also in the sense that both the laws of Double
Negation and of Excluded Middle are satisfied. The key difference between
the two is that in a bivalent logic only one unary connective can be defined
and so in this connectives both properties coincide and it is represented by
an orthogonal-complement. In a 3-valued logic however the two properties
of “not” are expressed by two separate connectives each satisfying a different
law and so these are represented by an orthogonal and a complement. Result
2.2 shows that even in this case the properties of negation and denial
coincide for each proposition among a subsystem of “logically relevant”
propositions.

The 2-valued propositional calculus can now be understood as the special
case of logic £ where it is assumed that all propositions are mutually
relevant, where the logical scope of every proposition is assumed to be the
entire set of propositions. In the next section the logic £ generates an even
more interesting global logic that can express numerical and contextual
modalities.

3. Global logic £

Logic £ is more expressive than the traditional bivalent propositional
calculus, since the truth-value gaps allow two distinct senses of “not” to be
expressed as well as valuation relations and logical “relevance” or “scope”.
Even with this change however the truth-functional connectives cannot
express properties of uncertainties like probabilities or fuzzy sets. These
depend on “global” features of the logic, on properties of multiple valuations
that simply cannot be expressed truth-functionally.

Modal connectives introduced by Saul Kripke in the 1960’s, are not truth-
functional. These were defined by introducing new structures into logic,
including a set of “possible worlds” with an “accessibility” relation over this
set. Connectives possible and certain are defined in terms of these new
structures, which are simply assumed to be primitive to logic. Different
accessibility relations among the “worlds” generate different Kripke systems.

Here a different approach is taken. No new structures are added to the
primitives of logic but instead new connectives are defined in terms of
multiple valuations in H, in terms of subsets of these valuations generated by
relations over H. The global logic £ can include a wide range of different
connectives generated by different relevance relations. This logic is more
general than Kripke logics since it is an extension of the 3-valued
propositional logic while the Kripke systems are extensions of the bivalent
propositional calculus. Also the global conditions can generate Kripke
“possible worlds” as a special case of the global connectives, which in
addition can include different modalities based on different relations, while a
Kripke logic is based on just one “accessibility” relation."



Since the global extension of logic . is generated only from its own set H of
valuations, and relations over this set, there is no ambiguity if this global
logic is called £ as well. The simplest modalities of £ depend on the entire set
H. Connectives L and M are added to the alphabet of logic of £ along with
rules of formation that for any a in the propositional logic £, Lo and Ma. are

wfifs of its global logic. These connectives are then defined by global valuation
rules.

Defn 3.1: (Simply certain and possible, L M)
For any a in propositional logic £, any h in H,
i) Proposition a is (simply) certain according to valuation h, h(La) = t, iff o
is true in all valuations in H and h(La) = f otherwise.
ii) M = ¢ ~ L~ . so a is (simply) possible according to h, h(Ma) = tiff a is true
in some valuation h’in H, and h(Ma) = f otherwise.

These valuation rules extend any valuation h of truth-functionall logic £ to a
valuation of these two global connectives as well. Since this extension is
unique and well-defined for any h both the propositional and the global
valuation is referred to by the same variable. Other connectives can
obviously be derived from these two simple ones, for example a might be
defined as uncertain in h when h(La) # tie. when not every valuation in H
finds it true.

More interesting uncertainties however are contextual, depending on a
subset of valuations in H derived from some initial valuation h and a relation
R over H. Contextual modalities depend on a proposition being true in every
valuation related by R to h, or on some valuation in this subset. Elaborating
the simple case above:

Defn 3.2: (Contextual modalities, LR, MR)
For any a in logic £, h in H and R a binary relation over H then
i) Proposition a is R-certain in valuation h, h(LRa) = t, iff h’(a) = t for all b’
such that h’'Rh and h(LRa) = f, a is R-uncertain in valuation h otherwise.
ii) MR = 4¢ ~ LR~ and so a is R-possible in valuation h, h(MRa) = tiff h'(a) =t
for some h’ such that h’ R h and h(MRa) = f otherwise.

A proposition is R-certain in h when if is true in all valuations related by R to
h, and is R-possible according to h when true in some R-related valuation h’.

Different relations over H will obviously generate different modal
connectives and unlike the Kripke logics, these can all be expressed in £. For
example a wff of form LRa A MR is well-defined for distinct relations R, R’
over H. Later some examples will be developed using different relations
including consistency generating probabilities, and other relations defined by
semantic conditions, for example by the propositions they find true.

The following terms are useful.



Defn 3.3: (truth-set Ty, falsity-set Fy, context Cp)
For any valuation h in H of logic .4, a a proposition of .£
i). The truth-set of h T, = {oa €4 h(a) =t}
ii) The falsity-set of h Fn = {o € £: h(a) = f}.
iii) The context of h Ch = Th U Fn

So the truth-set of a valuation is the set of propositions it finds true, while the
falsity-set contains the propositions false in this valuation. The context is the
union of these two sets, containing every proposition assigned a truth-value.

Result 3.1: Truth sets and valuations exactly correspond.
Proof: Where valuation h = h’ then Ty = Ty by defn h. Where Ty = Tw then
Fn = Fi since these are negations of all propositions in Tn and so
unassigned propositions are also the same (the propositions outside the
context Cp) and so truth-sets and valuations exactly correspond.

So valuations are represented by their truth-sets, a fact that will be useful in
using algebra to study global logic.

The difference between traditional propositional logic, propositional logic £
and its global logic can now be clearly expressed. The traditional 2-valued
propositional calculus is the logic of contexts, appropriate where reasoning
assumes every proposition has a truth-value. Truth-functional logic <having
truth-value gaps is more general than bivalent logic, and is the logic of a
single valuation h no longer limited to its context. Here the valuation
relations of h can be expressed and reasoning includes propositions without
a truth-value. Lastly the global logic £ is yet more general since all truth-
functional connectives are expressed as well as wider aspects of reasoning
involving all the valuations. In global logic £ one valuation can express
aspects of other valuations as well.

The notion of a truth set and context allows global relations of mutual
relevance and of incompatibility to be defined that could not be expressed in
the truth-functional logic.

Defn 3.4: (relevant valuations, incompatible propositions)
Forh,h’inH of o, B in <,
i) Valuations h, h’ are mutually relevant, h’ Rel h iff Ch N Ch’ # &
ii) Two propositions a, § are compatible, o. C p iff for some h a € Cy, and
B € Ch and are incompatible otherwise

Two valuations are relevant when there is some proposition assigned a truth-
value by them both. Two propositions are compatible when they are both
assigned truth-values by the same valuation and incompatible when this is
not the case.

An important correspondence between propositions and valuations will be
useful in later discussions of uncertainties.
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Defn 3.5: (characteristic wff ow, characteristic valuation hq)
i). The characteristic proposition o of valuation h is logically equivalent to
the conjunction of all propositions h finds true, ie. for any valuation h in H,
on = 3 where ( = (Ayi)) is logically true in £ for all propositions y; in the
truth-set Tn
ii). The characteristic valuation h of proposition a is the valuation finding
this proposition and all its logical consequences true, but making no other
truth-assignments, ie. for any wff o of logic £, ha in H is such that Ty, =

{B: a D P is logically true in £ }.

So any valuation h in H generates a characteristic proposition o equivalent to
the conjunction of all the propositions true in h. Similarly any proposition a
generates a characteristic valuation hq which assigns true to every logical
consequence of a. Clearly where two valuations are the same, so too are
their characteristic propositions, and vice versa two propositions that are
logically equivalent have the same characteristic valuation."ii

Using this natural correspondence, uncertainties can be expressed in terms
of valuations or propositions, something that will be particularly useful when
probabilities are discussed.

4. Truth-systems of £

The modalities certain and possible introduced above will not be further
explored but instead will be elaborated into new numerical uncertainties that
can very accurately express a sense of how certain or how possible a
proposition is. These degrees of truth can be developed into probabilities and
fuzzy set memberships. Intuitively they are refinements of the modalities
that express not just whether all or some related valuations find a
proposition true, but how many related valuations do so.

Mathematical measures are used for this refinement, which requires further
algebra. For measures are functions which are well-defined only over a
Boolean field of sets. The formal definitions are as follows.

Defn 4.1: (measure space, measure W)
A measure space is a triple < X, 7, u > where X is some set, 7 a Boolean field
of subsets of X, and n a function over 7 which has the following properties:
i)forany SinZ u(S)=0and u(S) =1
i) u(d) = 0; u(X) =1
iii) For disjoint sets S;in Z. w(USi) = X u(Si)

So a measure is a function operating over a Boolean field of sets that assigns a
number in the interval [0, 1] to each subset. The properties are designed to
express a sense of “size” of the set. Thus 0 is assigned to the empty set and 1
to the universal set X. The functions are additive so that the measure of a
union of sets is the sum of the measures of individual sets where these are
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disjoint. It also follows that the measures are monotone, where S C S’ then
u(S) < u(S’). The properties of the Boolean field of subsets over which a
measure is defined obviously provide structure to the measures themselves,
and so this Boolean structure is essential to the very notion of the “size” of a
set. For this reason suggestions that measure theory might be modified to
suita non-Boolean algebra is not accepted, and instead finding appropriate
measure spaces in the non-Boolean algebra of generalised logic £ is
considered the key to developing the numerical degrees of truth.

Traditionally the logical foundation for probability theory finds the measure
space of a logic in the Stone Space of the Boolean algebra representing
traditional bivalent propositional calculus. This close relation between
Boolean algebra and bivalent logic has been largely unchallenged, perhaps in
part because there is widespread reluctance to lose this correspondence:
after all traditional bivalent logic is represented by a Boolean algebra that by
Stone’s Theorem is isomorphic to its Stone Space, a Boolean field of sets. Vi
This is the field of Boolean ultrafilters of the algebra of the logic, an “event
space” for its probability theory, understood as representing the 2-valued
valuations of the logic in which each proposition is true. The lack of such a
close connection in any non-bivalent propositional may seem daunting.

However logic £ being not bivalent has an algebra »# that is not a Boolean
algebra. There is now no corresponding Stone Space, no field of Boolean
ultrafilters for this logic. It might appear that logic £ therefore lacks a field of
sets to act as a measure space, and it is sometimes suggested that the notion
of a measure should be generalised to apply over structures that are not
Boolean fields of sets, just as it is sometimes suggested that one of Boole’s
Laws of Thought be dropped.* These suggestions have been neither fruitful
nor beautiful. It hardly helps our understanding to lose a law of thought.

Boolean fields remain of central importance to the measures that define
numerical degrees of truth, but these will represent “truth systems” of the
logic, systems of valuations that find each proposition true. Some definitions
are needed this precise. First are some properties of H.

Defn 4.2: (inclusion, agreement; maximal valuation)
Let h, h’ be valuations in H with corresponding truth-sets Ty and Ty
i) A partial ordering among valuations is generated by set inclusion among
truth-sets: h C h’, (h’ includes h or h’ agrees with h) iff T, € Ty
ii) Valuation h is maximal if its truth-set T} is maximal with respect to set
inclusion, ie. if there is no other valuation h’ in H such that T,C Ty’

So one valuation includes another (or agrees with it) if its truth-set includes
the other’s. A valuation is maximal when its truth-set is, ie. when no other
truth-set properly contains its truth-set, ie. when no other valuation makes
the same truth-assignments as a maximal valuation but also makes more.

Filters are subsets of an algebra with special properties, according to these
standard definitions.
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Defn 4.3: (filter, maximal filter, Boolean ultrafilter)
Let #= < A, <> be a lattice.
i) Subset F of Ais a filter of #if 1) FCA, 2) F # U and 3) ifa Ab € F then
acFandb€&EF,and4)ifaEFanda<cthenc€EF.
ii) A maximal filter F is maximal with respect to set inclusion, ie. there is no
other filter F’ that properly contains it, no filter F’ of #where F C F".
iii) A Boolean ultrafilter F is a maximal filter of Boolean algebra #which has
the property that for each element a in &, either a or its orthgogonal-

complement a’ is contained in F, ie.a € F or a’ € F for every a. This
condition is sometimes called the ultrafilter property.

It will now be shown that filters of the algebra # of £ represent truth-sets
and hence also their valuations.

Result 4.1: Valuations in H, their truth-sets and the filters of #all exactly
correspond.
Proof: By Result 3.1 above valuations and truth-sets exactly correspond. To
show truth-sets and filters correspond let [Tn] represent Th on 4, ie. [Th] =
{[a]: o € Th}. To show this is a filter of # note first that Ty is non-empty
since it contains at least the logical truths of 4, ie. (o D a) € Th and so
[Tn] # & and condition 1) holds. This is a proper subset because it does not
contain the negations of these truths, ie. =(o. D ) & Tn and so [Tn] C A and
condition 2) holds. Alsoa Ab € [Ty] iff h(a A B) = t by defn Ty, iff h(a) = t
and h(p) =tby defn A, iffa € [Tn] and b € [Th] defn [Th] so condition 3)
holds. Similarly when h(a D ) = tand h(a) = t then h(f) = t as well by defn
D, and so condition 4) holds and each Ty is represented by a filter [Tn]. To
show vice versa, that any filter F of # represents a truth-set Tr for some h in
H suppose it does not. Then either F contains inconsistent classes, fails to
contain classes of logical consequences or fails to contain classes of
conjuncts of propositions represented in F. In the first case for some a in .4,
[a] and either [-a] or [~a]isin F,so [a A —a] = [aa A ~a] =0 isin F by i)
but this means every [B] is in F because 0 D 3 is logically true in logic £ and
so 0 < [B] on # by ii) and so for any b = [B], b € F, which contradicts the
assumption that F is a proper subset of # and so the assumption that F
contains a contradiction must be false. The other cases are established in a
similar way and it follows every filter F = [Ty] for some h in H.

So filters, truth-sets and valuations all exactly correspond. This means that
measuring sets of valuations that find a proposition true will be achieved by
measuring sets of truth-sets containing the proposition, or by measuring sets
of filters of # containing this proposition’s equivalence class.

At last the Boolean fields appropriate as measure spaces for numerical
uncertainties can be identified.

Defn 4.4: (truth-system sRb, initial h, trivial ho, simple truth-system s)
For a a wff of logic <, hin H, and R a binary relation over H
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i) The Rh-truth-system of £, SRh = < SR N, U, c,- >, where

SRh — ([Ty]: ' Rh & h’(0) = t} and the operations represent connectives, so
Seh N SEM = SRR 5, and SEM U SE" = SRY 5, and - SRP = SRh.

ii) Valuation h is called the initial condition of truth-system SR,

iii) The truth-set Ty of trivial valuation hg ={a: h(a) =t for all h in H}

iv) The simple truth-system s of <is the special case of SRt where h = hy
and R is the universal relation over H, ie. for any h, h’ in H,h Rh’

So truth-systems of logic £ are systems of sets of related filters of the algebra
A of £ containing each equivalence class. By Result 4.1 these represent
systems of related truth-sets containing each proposition, and hence systems
of valuations related by R to an initial condition h, that find each proposition
true. Since the trivial valuation finds only logically true propositions true,
and the universal relation relates all valuations, the simple truth-system S is
the truth-system derived from all the valuations in H of Z.

Operations on truth-systems represent algebraic operations on »# and thus
the logical connectives of £. In a fundamental result these are shown to be
the operations of a Boolean algebra.

Result 4.2: Each truth-system SRh of logic £ is a Boolean field of sets.
Proof follows from properties of logical connectives, which generate the
operations on SRh, It follows from properties of the binary logical
connectives on .£ that set operations over SRh have the properties of a
distributive lattice. To see it is a Boolean field note that denial generates the
set complement operation on these systems. This connective obviously
generates lattice complement (because it satisfies Excluded Middle) but in
addition generates an involution (orthogonal) by this argument:
SR = {[Tw]: W’ Rh & h’(~a) = t} (by the definition of SR")
={[Tw]: h" Rh & h’(a) # t} (by the definition of ~)
= —{[Tw]: h’ Rh & h’(a) = t } (by the definition of -)
= - SRI (by the definition of S’P).

So the truth-systems SRh of logic £ differ from its algebra # while the algebra
A 1is a distributive lattice with an orthogonal and a complement operation, on
the truth-systems these two monadic operations coincide. Truth-systems are
Boolean algebras.

It is interesting that denial does not generate an involution on representative
algebra # of logic £ but it does generate an involution on the truth-systems. It
fails to do so on the logic because when a has no truth-value ~a is true, so
~~q. is false which means these two propositions o and ~~a are not logically
equivalent in logic £ which means [~~a] # [a] on # a” # a, and so the
operation’ representing ~ on »#is not an orthogonal operation. On the truth-
systems however things are different. For proposition a is true in h if and
only ~a fails to be true, which means the denial of this denial, ~~a, must be
true: h(a) = tiff h(~a) # t iff h(~~a) =tand so a € Ty, iff ~~o € T which
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means that SR = SRh and - SRh = SRE and denial generates a set
complement on any truth-system. Each truth-system is a Boolean algebra
even though the algebra # of logic £ is not.

5. Degrees of truth in global £

Degrees of truth are numerical uncertainties, modalities that express “how
true” a proposition is in the sense of how many relevant valuations find it
true. They are defined using mathematical measures over truth-systems.
Because of Result 4.2 above these measures are well-defined.

Defn 5.1: (Rh-degree of truth, deggrn(ct), uRh, DR, valuation of degrees hR)
For any a in .4, valuation h in H, R a binary relation over H
i) The Rh-degree of truth, or Rh-uncertainty, of a given R and initial h, is
degrn(c) = pRP(SRM) for uRM a measure over the truth-system SRrb.
ii) Numerical connectives DR for D in the real interval [0, 1] can be added
to the alphabet of logic £ defined by the global definition that for any h’ in H,
h’(DRh o) = tiff D = degrn(a), and h’(DRr o) = f otherwise.
iii) an uncertain valuation, or valuation of degrees h® is a many-valued
mapping to the propositions defined by setting hR: .Z -> [0, 1] where
h%(a) =ar degrn(at)

By definition i) degrees of truth are measures over truth-systems of filters
related to an initial condition that contain an equivalence class, expressing
how many valuation relevant to this initial condition find a proposition true.x
By ii) these degrees can be considered numerical connectives in global logic
that are true when this number is the value of the appropriate measure and
false otherwise. By iii) degrees of truth are expressed by many-valued
valuations assigning numbers in the interval [0, 1] to propositions, where
each proposition is assigned the appropriate degree of truth.

Examples help show the expressive power of these degrees. Consider
ordinary propositions such as “Tom is tall”, “the road is long”, “It is very late”.
The terms “tall”, “long” “late” are all ordinarily imprecise. This means the
propositions can be true or false, but their truth-value depends on context,
on what other propositions are deemed true. Such imprecise terms can be
forced to take truth-values by appeal to some precise definition, but this can
lead to paradox. For example suppose that “a tall man” is defined to be “1.80
m or taller”. While this introduces precision, allowing truth-values to be
assigned to propositions, a paradox arises. Two men of height say 1.7905 and
1.8 are now judged “not tall” and “tall” respectively. Yet this is counter to the
meaning of “tall” in ordinary language since such a small difference could
never ordinarily distinguish between a man who is “tall” and “not tall”. Such a
definition is counter to the meaning of vague terms.

In ordinary language propositions based on vague terms often seem not to

have a truth-value but instead a logical value that lies on some continuum in
between. Degrees of truth achieve just this. “Tom is tall” may take different
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truth-values even when the same Tom is described, depending on what other
propositions are found true. For example if short people are described then
“Tom is tall” seems true, while if other much taller people are described this
proposition may be false, but in general we may consider it “largely true” if
Tom’s height is a little more than average. A degree of truth of 0.6 expresses
this, being intuitively understood to mean “Tom is tall-ish” or “more tall than
short”. Formally such numbers can be understood precisely as a measure of a
set of related valuations that find “Tom is tall” is true.

The ancient “paradoxes of the heap” are avoided in global logic £ because
degrees of truth can be assigned to propositions here as well as truth-values.
Gradual change, which causes problems for truth-functional logic similar to
those of vague term “tall”, can now be described by a gradual change of
logical value. In the paradox “Here is a heap of sand” is initially supposed
true, then individual grains are removed one by one, until eventually only a
few grains are left. At this stage the proposition “Here is a heap of sand” is
clearly false, since a few grains is not a heap. The paradox however is in the
gradual change. At what stage in this process did the truth-value of this
proposition change? Even if some new rule is introduced, for example a
definition of a heap as more than 5000 grains, this means a single grain could
make the difference between a heap and not a heap, contradicting our notion
of this term being imprecise. Even if this is expressed in the truth-functional
logic £ with truth-value “gaps”, a problem remains.

Global logic however can express multiple valuations and degrees of truth
can be assigned to propositions at each stage of the sand removal. This
means a gradual real change is described by a gradual change in the degree of
truth. Initially when the heap is very large “Here is a heap of sand” is true in
every description of this phenomenon, no matter what other truth-values are
assigned to other propositions. These might include for example a discussion
of aesthetics, of building in the area, of children playing in the sand. In all
cases “Here is a heap of sand” is true and so a degree of truth of 1 is assigned.
However as the pile reduces in size fewer valuations will find this
proposition true. A description of building work using large equipment for
example may find this proposition false once it is not extremely large, while a
discussion of young children playing in the sand continues to find it true. As
the heap gets smaller it follows that fewer valuations find it true. Thus the
gradual diminishment of the heap is described by gradual diminishment of
the degree of truth, and paradox is avoided.

Different relations among the valuations of logic £ will generate different
degrees of truth according to the definition 5.1. Probabilities are one
important example of degrees and are discussed in the next few sections
below, generated by a formal relation of consistency over H. Other kinds of
uncertainty arise from other different relations over H. These may be
formally defined but may be contextual, depending on the propositions each
valuation finds true. Nuances of ordinary language can be expressed formally
in global logic £ that never could be expressed truth-functionally. And unlike

16



Kripke systems for example, £ can different uncertainties generated from
different relations, even in the same complex propositions.

Consider the example p = “Tom is tall” again, and suppose Tom'’s relatives are
very short. This means “Tom is tall” is often true in valuations describing his
family. Now consider Tom’s attempt to join the national Basketball team.
“Tom is tall” will often be false in valuations describing basketball players,
because these men are unusually tall. So the contextual degree of truth of p
generated by relation F, “family-describing-valuations” is different from the
degree of truth generated by B, the “basketball-player-descriptions”. This
variation by context is expressed in vernacular as “Family-wise Tom is tall
but basketball-wise he is short!”.

Semantic relations over H allow this to be expressed precisely in global logic.
Relation F over H relates all valuations assigning truth-values to descriptions
of Tom’s male relatives. Relation B relates all valuations assigning truth-
values to descriptions of basketball players. The initial valuation in these
examples is assumed to be the trivial valuation ho. Thus two different truth-
systems SF and SB, of family- and basketball- relevant valuations
respectively, are generated, assigning different degrees of truth to “Tom is
tall”. Because his family are short, Tom by comparison is tall, and so p is often
true in SF. A high proportion of valuations measured in this truth-system find
p true: say degr(p) = u"(Sp) = 0.9, meaning that 9 out of 10 valuations
assigning truth-values to propositions about his family find “Tom is tall” is
true. On the other hand basketball players are mostly very tall and so fewer
valuations in SB will find that “Tom is tall” is true. The degree of truth of p in
this truth-system is therefore lower, say degg(p) = u® (SE) = 0.3, meaning
that only 3 out of 10 valuations about basketball players find “Tom is tall” is
true. The same proposition has different degrees of truth in truth-systems
generated by different relations R on H.

In logic £ these different degrees of truth can be combined in a complex
proposition. The family-wise degree of truth of p was 0.9 and so the complex
proposition 0.9%p is true in h, h(0.9Fp) = t. However the Basketball-wise
degree of truth was 0.3 and so h(0.3Bp) = t as well. These two propositions
can be combined in the conjunction (0.9Fp A 0.3Bp) which is also true in h.
Alternatively by Defn 9.1 the same degrees can be expressed by uncertain
valuations and so for example hf(p) = 0.9. Similarly since h(0.3Bp) = tit
follows that hB(p) = 0.3. Both methods express that “Tom is tall” has a family-
wise degree of truth of 0.9 while basketball-wise the degree is 0.3. Formally
this means that 9 out of 10 “family” descriptions find “Tom is tall is true”
while only 3 out of 10 “basketball” descriptions do so. Later, in section 9
these degrees are also expressed in terms of “fuzzy sets”.

Probabilities are developed as degrees of truth in the next sections. It is
useful to use the natural correspondence of Defn 3.5 above express degrees
of truth in terms of propositions or of valuations. Already it has been noted
that any relation among the valuations of £ generates a corresponding
relation among their characteristic propositions, and this also generates a
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relation among the corresponding equivalence classes. In fact degrees of
truth can be expressed with propositions as initial condition, and to be
assigned to valuations as well as propositions using these correspondences.

Defn 5.2: (relation R over H, £ or »# degr«(), degrn(h’))
For any relation R over H and propositions a,  of £
i) ha Rhg iff a R Biff [T, ] R [Tp].

i) degra(B) =ar pR*(Sg%) = pRha (Sgh“)-
ii) degrn(h’) =ar degrn(Bn,)-

By i) any bivalent relation R among valuations generates a corresponding
relation among their characteristic propositions or equivalence classes. By ii)
a degree of truth can have a proposition as an initial condition, it is the
degree with the initial characteristic valuation. By iii) a degree of truth can be
assigned to a valuation, this is the degree of truth of its characteristic
proposition. These correspondences will be particularly useful in later
discussion of probabilities.

6. Probabilities

Probabilities are degrees of truth in a logic that describes reality. The nature
of reality is not considered here, nor is the nature of description or questions
of how it is that language can describe reality. These topics lie outside logic in
metaphysics. Logic instead takes the truth-values true and false as
fundamental and the “meaning” of a proposition is expressed when a truth-
value is assigned. If propositions of the language are descriptions, then this
meaning is assumed to be a description of reality, so valuations express
descriptions.

Probabilities express how “likely” a proposition is to be a true description of
reality given some initial description of the system. This means probabilities
are degrees of truth generated by a “successor” relation among valuations,
which holds between one description of reality and another that might next
be used to describe the same real system. The probability of a proposition is
thus a measure of how many valuations that might describe the same reality
as the initial condition, find a proposition true.

To formally define probabilities the “successor” relation over H must be
identified. Recall in section 3 above truth-sets were introduced as the set of
propositions a valuation finds true (defn 3.3). In section 4 a partial ordering,
inclusion or agreement among valuations was generated by set inclusion
among truth-sets: one valuation h includes another h’, when it agrees with its
truth-value assignments, which means that every proposition true in h’ is
true in h, a definition we now call strong consistency (defn 4.1). In this same
set of definitions a valuation was called maximal when it is maximal with
respect to this relation, ie. when its truth-set is maximal with respect to set
inclusion which means that no other valuation makes the same truth-value
assignments and yet makes more. Some new terms will also be useful.
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Defn 6.1: ((non-)contradictory, strong- weak- consistency; bivalent, classical logic;
compatible, incompatible propsitions)
For valuations h, h’ in H and propositions a, § of £
i). Valuations h, h’ are contradictory if for some o, h(a)=t but h’(a))=f and
are non-contradictory (weakly consistent) h W h’ if there is no such a in 4.
ii) Valuation h’ agrees with (is strongly consistent with) valuation h,
h € h’, if every proposition true in h is true in h’, ie. if Tn € Ty .
iii) Valuation h is bivalent if it assigns a truth-value to every proposition of
the logic, ie. Cy = L.
iv) Logic < is bivalent if every valuation h in H is bivalent and is classical if
all its maximal valuations are bivalent
v) Propositions a, § are compatible if there for some h o, f € Cn and are
incompatible otherwise.

By i) contradictory valuations make conflicting truth-value assignments to
the same proposition, while non-contradictory valuations do not. By ii) a
valuation is strongly consistent with another if it agrees with it, making at
least the same truth-assignments, as defined earlier. The new name is
introduced because this property is stronger than the first: clearly any
valuation that agrees with another does not contradict it but the converse is
not the case, and so non-contradiction is called weak and agreement strong
consistency. By iii) a bivalent valuation assigns a truth-value to every
proposition in the logic. By iv) a bivalent logic has all valuations with this
property, while a classical logic has maximal valuations bivalent. This means
a logic may be classical but not bivalent, non-standard terminology that will
be justified later when classical logic is shown to have classical probabilities.
Lastly two propositions are incompatible when no valuation assigns truth-
values to them both, and are compatible otherwise.

Clearly all propositions of a classical logic will be mutually compatible, since
a bivalent valuation assigns truth-values to all propositions. In general
however a logic lacks bivalent valuations and therefore has some
propositions that are mutually incompatible, that cannot be assigned truth-
values in the same valuation. This turns out to be a crucial property that
determines the system of probabilities used by a logic.

If probabilities were degrees of truth based on strong consistency, then only
valuations that agree with initial truth-assignments could be included in the
measured sets. But this means a valuation assigning truth to a proposition
incompatible with initial truths would be ignored. This seems inappropriate,
since where a logic includes incompatible descriptions of the same reality
they should surely be considered in its probabilities. So strong consistency is
rejected as the successor relation for probabilities, and this is assumed to be
weak consistency instead. It is also assumed that a probability measures only
maximal valuations, for only the “fullest” descriptions of a real system need
be measured in a probability: since every valuation is by definition included
in a maximal one only “partial” descriptions will be ignored.
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A probability then, is a measure of the set of maximal descriptions that do not
contradict an initial valuation, and that find a proposition true, an
uncertainty derived from relation W over H:

Defn 6.2: (h-probability space 2" probn(a), simple probability space 2)
For any hin H, a in ¢, and relation W of weak consistency:
i) The h-probability-space 7" of logic £ is the truth-system generated by
weak consistency W and initial condition h, ie. 2 = sWh,
ii) The probability of proposition o given initial h is a measure over this
truth-system, ie. probn(a) =ar degwn(a) = p"VP(SWh), a measure over the h-
probability-space of the set of maximal valuations in H that do not
contradict h and that find o true.
iii) The simple probability space P of any logic £ is the simple truth-system
for probabilities, ie. 2 =4r 2" for h = hy the trivial valuation.

So by this fundamental definition a probability space 7" is a truth-system
derived from maximal valuations that do not contradict initial h: a system of
sets of maximal valuations in H that do not conflict with this initial
description and that find each proposition true. Since a probability space is
always derived from the same relation W of non-contradiction among
maximal valuations, this can be omitted from the formalism. A simple
probability space 2 has a trivial initial condition and so is a system derived

from the set of filters representing all the maximal valuations of H.

In a classical logic weak consistency among maximal valuations coincides
with strong consistency. This means the simple probability space has special
significance in a logic that is classical.

Result 6.1: Every probability of a classical logic £ can be expressed in terms of the
simple probability space.
Proof: In a classical logic . all maximal valuations are bivalent, (by defn).
But bivalent h’ of £ is non-contradictory with h if and only if it agrees with
h: <= is obvious; to show => suppose the contrary, ie. that h’ is bivalent,
h’W h buth & h’ and so some a is true in h but not in h’; but because h’ is
bivalent this means a is false in h’ which contradicts the assumption that
h’ Wh, and so h Ch’. It follows that
probq(B) = degc«(B) (because in this special case W = € by above)
= u=*(Sg%) (by the definition of deg)
= u=%(Sqnp) (by properties of €)
= U(Sarp) / H(Sa) (by properties of u=* where p is a measure over the
simple truth-system s = 2).

So where all maximal valuations are bivalent the simple probability space of
a logic can express all its probabilities.

Because they are bivalent, the maximal valuations of a classical logic £ find
either a or its negation —a true for every proposition a in £, which means
that the truth-sets of these valuations are represented by filters of algebra #
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of £ with the ultrafilter property, (Defn 4.3). That is, the truth-sets are
represented by Boolean ultrafilters of a Boolean algebra # that represents
the bivalent version of logic < and so in this case 2 of logic £ coincides with
the Stone space of Boolean algebra # representing the bivalent version of
logic £. It appears that the probabilities in this case have the traditional
logical foundation as measures over a field of ultrafilters representing the
bivalent valuations in which a proposition is true. However there is one key
difference between the traditional and present view, which is that the
algebra # is not assumed to represent the logic £ because this logic is not
bivalent. Instead . is represented by the algebra # discussed in section 2, a
distributive lattice with orthogonal and complement rather than a Boolean
algebra where orthogonal and complement coincide. So although every logic
has a simple probability space, only in bivalent logic will this be the Stone
space of its algebra.

By Result 6.1, probabilities have the same definition in any logic .£ but they
generate very different systems according to whether this logic is classical or
not. Where the logic is classical all maximal valuations are bivalent, all
propositions in logic.£ are mutually compatible, and all the logic’s
probabilities can be expressed on the simple probability space. However in
general maximal valuations are not bivalent and so there are incompatible
propositions and so the simple probability space lacks this classical role. In
general probabilities are conditional in the strong sense that the very
probability space over which they are defined, depends on the initial
condition. This means a family of different probability spaces is required to
express all of a logic’s probabilities. This key difference between classical and
non-classical probabilities accounts for the Hilbert Space representation of
quantum mechanics, as will now be discussed.

7. Probabilities in mechanics

Theories of both classical and quantum mechanics use magnitudes including
position and momentum to describe real systems. Each theory T of mechanics
has a set Mt of magnitudes to describe a reality, where each magnitude m in
Vm has a value-set Vi, of real numbers, the allowable values for this
magnitude on the reality described, according to this theory.

Simple propositions in mechanical theories therefore have a common form.
They can be expressed as ordered pairs (m, A), where m is a magnitude in Mr
and A a Borel subset of the value-set Vi,. Assuming each subset A is Borel
ensures that set operations among them will be well-defined as well as
atomic propositions of form (m, r) for r € Vi, the most “precise” m-
propositions of the theory. Atomic proposition (m, r) asserts “The value of
magnitude m on this reality is r”.

Set relations among subsets of Vi, generate relations within each m-system of

propositions that are assumed expressed by logical connectives. It is
assumed for example if p = (m, A) and p’ = (m, A’) that the set union A U A is
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expressed by logical disjunction, ie. p V p’ = (m, A U A’). This follows from the
assumption that each m on the system is characterised by an infinitely
precise value. For if (m, r) is true for some r in Vi, thenrisin (A U A’) iff itis
in either A or A’ and so (m, A U A’) is true iff either one of p or p’ must be true,
which is the defining property of disjunction. Similarly conjunction is
assumed to express set intersection, p A q = (m, A N A’) because the value of
m is in this intersection only if it is also in each of the two subsets and so

(m, A N A’) is assumed true iff either p or p’ is true, a condition that
characterises conjunction. Implication similarly expresses set inclusion since
when A C A’ then ifrisin Aitis alsoin A’ and so p D p’ in this case is true.
Finally negation expresses the set complement since the value of m is in set A
iff it is outside the set-complement (Vi - A) and so p = (m, A) is true iff -p =
(m, Vi - A) is false.

Both classical and quantum theories therefore have simple propositions of
similar form, and these form traditional subsystems of m-propositions for
each magnitude m in the theory, with traditional logical connectives
generated by set operations on each value-set. One consequence is that when
a valuation of the logic of either kind of theory finds any atomic m-
proposition true it also assigns truth-values to all the other m-propositions.
For when some (m, r) is true in h, then (m, r’) must be false in h for every
other atomic proposition, r # r’ by the assumption that negation expresses
the set complement on Vi, and every other simple proposition (m, A) will be
true iff ris in A and will be false otherwise. Both kinds of theory assume an
atomic truth-value means truth-values are assigned to all the m-propositions.

The logic of both classical and quantum theories is the logic £ discussed
above, founded on primitive truth-values and the traditional Laws of
Thought. So it is neither the form of simple propositions nor the logic used to
combine these, that distinguishes classical from quantum theories. What is
different in either kind of theory are the mechanical laws relating magnitudes
in Mr and hence the propositions the magnitudes generate. In classical
mechanics all magnitudes are compatible in the sense that their simple
propositions are all mutually compatible, they can all be assigned truth-
values in a common context. The logic of any classical theory of mechanics
has maximal valuations that are bivalent, assigning true or false to all atomic
proposition of the theory, and hence to all other propositions as well.
However quantum theories have magnitudes that are incompatible in the
sense that they generate simple propositions which are incompatible.
According to Heisenberg’s Uncertainty Principle no two atomic propositions
in quantum theory of position- and momentum- magnitudes can be assigned
truth-values in the same valuation. The logic of quantum theories have
incompatible propositions and hence maximal valuations that are not
bivalent. The logic of these theories is therefore not classical in the sense of
Defn 6.1.

This difference between classical and quantum theories of mechanics means

that by Result 6.1 there is a fundamental difference in their systems of
probabilities. According to this result probabilities of classical mechanics can
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all be expressed over the simple probability space of the logic of this theory,
which means the familiar representation of probabilities holds. However
since quantum logic has incompatible propositions and maximal valuations
that are not bivalent, this special result does not hold for these theories.
Quantum probabilities cannot be expressed in just the simple probability
space because the successor relation in this case is weak not strong
consistency. These probabilities are strongly conditional in the sense that the
probability space over which they are defined, depends on the initial
condition. Quantum probabilities require a very different and non-classical
mathematical expression.

All probabilities in mechanics are conditional on the physical measurement of
a magnitude. Physical measurement is not to be confused with a mathematical
measurement: the first is a procedure, in principle describable, that results in
truth being assigned to some non-trivial simple proposition of the magnitude
concerned; while the second is a mathematical function over a Boolean field
of sets. Physical properties of measurement are not considered here. The
logical property of physical measurement of magnitude m of the theory, is
that immediately afterwards some non-trivial m-proposition is found true,
some (m, A) where A is neither the empty set nor the entire set Vi,. The “most
precise” such m-proposition (m, A) resulting from physical measurement is
that with the “smallest” set A with respect to set inclusion, and this is the
measurement outcome. Where a measurement outcome is an atomic
proposition (m, r), then the physical measurement is called ideally accurate
and in this case value r is “the value of m” on this system according to the
theory.

Classical theories of mechanics, having bivalent maximal valuations, use the
simple probability space 2 to express every probability. This measure space
is a field of Boolean ultrafilters containing each equivalence class,
representing the maximal bivalent valuations of the theory in which the
corresponding propositions are true. This also naturally corresponds to the
space of n-tuples of real numbers (r, rz,...rm), the “points” in n-space
corresponding to precise values of all the primitive magnitudes of the theory,
ie. these are the values in the atomic m-propositions true in each bivalent
valuation of logic .4t for each primitive magnitude m in Mr. This space of
points is the traditional “phase space” of classical mechanics, and is often
considered an underlying space of “properties” or “events” over which the
theory’s probabilities are defined. This can also be regarded as a Euclidean
vector space, where vectors over the space represent classical probability
assignments.

Quantum theories of mechanics however have no such representation,
because they have incompatible magnitudes generating incompatible
propositions and so lack bivalent maximal valuations, ie. they are not
classical. In these theories the simple probability space of the logic can be
defined but cannot express all the theory’s probabilities and instead different
probability spaces are required for different initial conditions. There is
therefore no corresponding space of Boolean ultrafilters or “phase space” of
points representing precise values for all the magnitudes in bivalent
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valuations. It has seemed that in lacking this classical phase space quantum
theories lack underlying “events” or “properties”. However we must
remember that logic is not concerned with “events” or “properties” but with
true descriptions. The probabilities of quantum theories, like those of
classical mechanics, are measures of sets of maximal filters representing
maximal truth-sets, expressing “how many” consistent valuations find a
proposition true. In quantum theories these cannot be expressed on a single
probability space and so it follows that the system of probabilities requires a
mathematical representation that is bound to be radically non-classical.

In fact quantum probabilities are expressed using Hilbert Space, a (usually)
infinite-dimensioned, complex-valued, inner product vector space.
Observable operators A, B... over a quantum theory’s Hilbert Space are linear,
Hermitian operators used to express the magnitudes of the theory. Quantum
“states” are normed unit vectors of the Hilbert Space that express quantum
descriptions of reality by generating probabilities using the inner product
operation. In the simplest case operators acting on these vectors satisfy the
eigenvalue equation Aai = ajou so that applying the operator to an
eigenvector simply alters it by a scalar. In fact this is a simplification since
mostly a more complex mathematical expression is required in terms of
vector spaces not eigenvectors, however in principle the issues are similar so
this case is used to simplify discussion. The set of eigenvectors {a;} that
satisfy this equation make up an eigenbasis for A, which means this is a
complete, orthonormal set that represents this operator. Because the
operator is Hermitian, the corresponding set of eigenvalues {ai} are real.

By Born’s Rule a physical measurement of magnitude A on a system initially
described by quantum state 1, leaves the real system in an eigenvector of
observable operator A4 representing this magnitude, and the corresponding
eigenvalue is the “value of A” on the system according to this quantum
theory. Furthermore the probability that particular eigenvector oy of A
describes the system after this physical measurement, ie. the probability that
ak is the value of A, is derived from the inner product (o, ) of these two
vectors. This probability is |(ow, y)|? a value sometimes called the
“component” of y in the direction of ok, or the “projection” of vector 1y onto
ax. Born’s Rule not only asserts this scalar is the probability but also that this
is the most information that can be derived from initial quantum state 1
about the probability of eigenvector ax describing the reality after the
physical measurement of 4, ie. the probability that ak is the value of
magnitude A after this physical measurement.

The new state o predicts this same value ax with certainty if the physical
measurement is immediately repeated. For quantum states have unit norm,
which means |(ow, o) |? = 1, and so the probability of finding ou again after
another measurement of A is a certainty. However any other eigenvalue a;j of
A has probability 0 in this case because the eigenvectors are also mutually
orthogonal, which means |(ax, 0)|?= 0 for k #j. So quantum state o
predicts value ax of A with certainty given an immediate repeat of the
measurement of A, and predicts any other value a;j of A with zero probability.
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Eigenvectors of observable operators are the so-called “pure states” of
quantum mechanics, while “mixed states” are other normed vectors that also
generate probabilities but are not eigenvectors of an observable operator,
and so do not predict any eigenvalue of an operator with certainty.

8. Quantum non-classical peculiarities

Quantum probabilities in Hilbert Space will now be expressed in logical
terms so their peculiarities can be compared with non-classical logical
probabilities. In fact these peculiarities are the same.

The “pure states” of quantum theory are eigenvectors of observable
operators, whose eigenvalues are the allowable values of the magnitudes
they represent on the system described. Each eigenvalue ax therefore is a
value in the value-set V4 of magnitude A in this theory T, and so corresponds
to an atomic A-proposition px = (A, ax) in the logic £r of T. The pure state o
expresses a description in which eigenvalue ak is predicted with certainty, so
ax corresponds to the characteristic valuation of px, which finds px and all its
logical consequences true. The “mixed states” of a quantum theory also
generate probabilities but these states are not eigenvectors of an observable
operator and so do not predict an eigenvalue with certainty. Mixed states
correspond to valuations of logic £t that are not characteristic for an atomic
proposition.

Where v is some initial quantum state, 1 = h, then by the discussion above
the quantum probability that ax describes the system after a physical
measurement of A given initial y, ie. that value ax is found true of A after this
measurement, is |(ow, Y)|%. This therefore is the logical probability probn(p)
= un(hp), which is a measure of the set of maximal valuations not
contradicting h =, that find p = (A, ax) true. The quantum representation in
Hilbert Space seems a natural way to represent these non-classical
probabilities. For projections |(ou, ¢)|? along the eigenvectors (or strictly
speaking over subspaces of the Hilbert Space associated with the observable
operators) seems an appropriate expression for the strongly conditional non-
classical measures over different probability spaces. This is however not only
a natural way to express these probabilities, but one that shares the key
peculiarities of the logical probabilities. The peculiarities familiar from
quantum probabilities are also peculiarities of the logical probabilities when
alogic is not classical, ie. when there are incompatible propositions so that
maximal valuations are not bivalent.

One quantum peculiarity is that probabilities do not commute because the
inner product operation defining them does not commute. Given initial state
, the probability that another state ¢ describes the system after a physical
measurement is not the same as the probability of ¢ given initial v, because
(W, 9) # (¢, ) in general. This has seemed peculiar because classical
probabilities are expressed in terms of a corresponding joint probability on

25



phase space, which does commute. Yet the lack of commutation is shared by
the logical probabilities in general. Where a logic is classcial all probabilities
are expressed on the simple probability space by Result 6.1, and the
probability probn(h’) is expressed by a corresponding joint probability
prob(a A ) in a subspace of the simple measure space, where a, 3 are wffs
characteristic for valuations h, h’ respectively. However for corresponding
probabilities in a logic that is not classical commutation fails. For here
probn(h’) is a measure over the valuations that do not find o false and find 3
true, while proby (h) measures valuations that do not find 3 false but find a
true. Where these are incompatible propositions the measures are over
different measure spaces of different sets and do not generally coincide so
probn(h’) # proby(h) and probabilities do not commute.

The irreducibly statistical nature of quantum probabilities is also a feature of
the logical probabilities. As discussed earlier, quantum probability | (o, )|?
is 1 only when ox coincides with initial 1, in which case all other eigenvectors
of A have probability 0. But even in this case irreducibly statistical
predictions are made about the value of an incompatible magnitude B. If j is
an eigenvector of observable operator B representing this magnitude, then
the inner product (fj, o) # 1 and # 0 so probabilities conditional on y are
irreducibly statistical. Logical probabilities share this property. Where
atomic proposition p = (A, ax) is an outcome of a physical measurement of A,
then ax is certain to be true if this physical measurement is repeated. For a
successor valuation of h, cannot find p false which means that no other
atomic A-proposition can be true and so probp(p) = 1 and prob,(p’) = 0 for
every other atomic proposition p’, exactly as in quantum theory. However
only irreducibly statistical predictions can be made about values of
incompatible magnitudes because if q = (B, bx) is incompatible with p, then
by definition it does not have a truth-value in h, and so hq does not contradict
h, and a successor valuation of initial valuation h;, can ind q true, so probp(q)
# 0. Because some other valuation that agrees with h, can be its successor
and will not find q true since p and q are incompatible, it follows that not
every successor of p finds q true and so proby(q) # 1. These logical
probabilities, just like quantum probabilities, are in general irreducibly
statistical.

Measurement-dependence is also a peculiarity of both quantum and logical
probabilities. By Born’s Rule, initial state 1 changes to an eigenvector ox of A
after an ideally accurate physical measurement of A. However if magnitude B
were subject to physical measurement instead of A, then the change would be
to an eigenvector of observable operator B representing B, say p; instead.
These two different vectors, ax or j, generate different predictions because
(@, Bj)|? # | (o, o) |? in general. So the choice of magnitude to subject to a
physical measurement generates different quantum probabilities. The logical
probabilities similarly depend on physical measurement even though only
logical properties of this process have been considered here. Given some
initial state h the choice of magnitude to measure determines the probability
space generating subsequent predictions. After a physical measurement of A
for example, probabilities are not conditional on h but on some A-outcome q,
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while after a physical measurement of B h changes to a valuation that finds a
B-outcome true. Where these different measurement outcomes are mutually
incompatible resulting probabilities will be different for probg(y) # probp(y)
where p and q are incompatible. On the left is a mathematical measure of the
set of maximal valuations that do not contradict A-outcome q and find y true,
while on the right is a measure of the maximal valuations that do not
contradict B-outcome p and find vy true. These are measures of different sets
on different measure spaces and so will be distinct.

Finally sequences of physical measurements in quantum theory appear
peculiar because “Bell-type inequalities” fail even though they are apparently
derived from self-evident equalities. Consider a sequence of measurements of
magnitudes A, B, C, each with just two values represented by + or - . For
simplicity lets call these magnitudes size, colour and weight, with values big
or small, black or white, heavy or light respectively. Classically a value of any
of these magnitudes can be expressed in terms of others, for example

(A+) = (A+ A B+) V (A+ A B-) an equality supposed self-evident because only
two possible values are allowed for B. This might read “All big bodies are
either white or black” for example. From this equality various inequalities
can be derived, including prob((A+ )A( B-)) < prob(A+), “The probability of
finding A big and white is less than or equal to the probability of finding A is
big”, which appears to follow from the earlier equality. Similar expressions
and inequalities can be derived about the other values of other magnitudes
and by combining such expressions about more than three different
magnitudes the complex “Bell-type inequalities” are derived.

However though these seem derived from self-evident equalities the Bell
type inequalities fail in quantum theories, a failure supported by experiment.
For example this is shown in experiments concerning spin in three mutually
incompatible directions a, b and ¢, expressed in quantum theory by
incompatible magnitudes A, B, C each with just two possible values “up” or
“down”. Observable operators 4, B, C representing these magnitudes on
Hilbert Space have just two eigenvectors each, a+ of 4 for spin “up” in
direction a for example, - for “down” in direction B. Bell type inequalities in
such a case simply do not hold in quantum theory, a failure that has been
confirmed by experiment, leading to claims of non-local effects and
“entangled” quantum properties.

Yet similar inequalities also fail for sequences of logical probabilities in
general, suggesting logical rather than real entanglements. These inequalities
fail because the supposedly “self-evident” expressions from which they are
derived, also fail. In a logic with incompatible propositions the supposedly
self-evident equalities simply do not hold. It is not the case in such a logic
that (A,+) = ((A,+) A (B,+)) V ((A,+) A (B,-)). If “size” and “colour” for example
have incompatible propositions then “All big bodies are either white or
black” no longer holds. For since the simple propositions are incompatible
they have no common context, so when (4, +) is true in h, then (B,+), (B, -)
are both unassigned. This means because since colour is incompatible with
size in our example, when “A is big” is true then neither “A is black” nor “A is
white” is true, even though these are the only two colour options. Another
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way of expressing this is to say that Excluded Middle does not hold for
negation in such a logic even in the maximal valuations, because these are not
bivalent. So ((B, +) V (B, -)) is not a logical truth and so

((A,+) # ((A, +) A ((B, +) V (B, -)) and this means the distributive law cannot
be used to derive ((A, +) # ((A, +) A (B, +)) + ((A, +) A (B, -)). Inequalities
generated by these expressions therefore also fail, so prob((A, +) A (B, -) £
prob(A, +). More complex “Bell-type Inequalities” involving three magnitudes
in a sequence will also fail.

This failure is not evidence of “entangled properties”, nor does it mean there
are non-local effects, nor is it evidence that the logical law of distribution fails
in “quantum logic” i Indeed there is no paradox at all in this failure so long as
terminology is appropriately logical. The failure of the inequalities shows at
most an “entanglement” of descriptions when propositions are incompatible
and so there are no bivalent valuations. The one-one correspondences
classically assumed between maximal valuations and realities is gone. More
than one incompatible maximal description now describes the same reality,
so changes can occur in a sequence of descriptions that may not describe real
change. There is also information loss as a result of the weak consistency
relation, which means that correlations for example that might hold initially
on a system may be lost in a sequence of descriptions, even though the
system may not have changed. Such a loss of information is also evident in
quantum theory.

Disquiet expressed by Einstein about quantum theory is to a limited extent
supported by this logical analysis. The use of incompatible descriptions, and
corresponding lack of bivalent valuations, weakens descriptive power in the
sense that propositions cannot be assumed to express “properties” because
these cannot be combined in maximal descriptions. However the claim in the
Einstein, Podolsky, Rosen paper that quantum theories are “incomplete” is
not justified. At the very outset of their paper these authors make the
following assertion:

“In a complete theory there is an element corresponding to each
element of reality. A sufficient condition for the reality of a physical
quantity is the possibility of predicting it with certainty without
disturbing the system...”

This assertion about “elements of reality” has no place in physics or in logic.
Itis a claim of metaphysics resembling medieval “proofs” for the existence of
God. The strongest claim that can be justified is that a theory without bivalent
valuations is inadequate in the sense that descriptions cannot be combined
into complexes we commonly call “properties”. In such a theory descriptions
cannot always be combined, and a change in description may not indicate a
change in reality. Both can be considered weaknesses in description, though
not an “incompleteness” in the strong metaphysical sense of EPR. After all,
this may be the only theory possible of very small reality. However equally
this may not, and if there were a theory of the very small will all compatible
descriptions then descriptions could always be combined, and probabilities
would be classical, expressed on a single probability space without
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irreducible statistics and measurement dependence. Such a theory could use
the term descriptions for “properties” or “events” without paradox. Surely if
well supported by experiment, such a theory would be preferable to quantum
mechanics.

Work by Kochen and Specker and others has shown that quantum theory is
not “incomplete” in the sense that it could be “completed” by the introduction
of new magnitudes or “hidden variables” that would allow bivalent
valuations. It is now clear that adding new descriptions, via new magnitudes
and values cannot turn quantum into a classical logic. A new theory of the
very small will therefore use different simple propositions to describe the
same realities, related in different way. These might not be “mechanical”
propositions in the strong sense that is assumed in classical mechanics, ie.
each magnitude m of the theory may not have infinitely “accurate” values for
position and momentum. This assumption imposes a structure on
descriptions that perhaps prevents the logic being classical.

The logical analysis of probabilities has shown at least that quantum theory
may use meaningful descriptions and probabilities defined exactly as in
classical mechanics, degrees of truth generated by weak consistency. in each
case these are well-defined mathematical measures over Boolean fields of
sets of propositions that are true. A probability in quantum theory as in any
other logic, expresses its “likelihood” in the sense of how many valuations
consistent with an initial condition find it true. However though these
definitions are the same in either theory, the systems of probabilities must be
represented mathematically in very different ways. Where a logic lacks
bivalent valuations one single probability space cannot express all the
strongly conditional probabilities. The Hilbert Space representation of
quantum probabilities now seems natural, and classical probabilities an
important special case.

9. Fuzzy sets

Finally predicates are added to the language of logic £, allowing propositions
to express set theory. While the truth-functional logic £ expresses “crisp” sets
of normal set theory, degrees of truth of global logic £ provide a new
foundation for “fuzzy” sets.

Formally the alphabet of logic . is extended to include predicate variables P,
Q..., as well as individual variables x, y ... and individual constant symbols a, b...
Rules of Formation include those of the propositional logic, (see Defn 1.3
above), as well as a rule for predicates.

Defn 9.1: (Rule of Formation for predicates )

If P is a predicate in L, x an individual variable and a an individual constant
then Px and Pa are wffs in the predicate logic of £
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The predicate logic £ has Rules of Formation for the truth-functional

connectives A, V, D, =, -, ~ see tables 1.1 and 1.2 above, and in addition
propositions Px, Qa, are well-formed formulae, understood as “x is P” or “a is

Q” respectively.

A “crisp” set is identified with its members, and has a two-valued
membership function. There is a natural relation between truth-values
assigned to predicate propositions, and the binary membership function so
each valuation of logic £ defines a “crisp” set associated with any predicate.

Defn 9.2: (Crisp set Pn)
For P a predicate in the language of logic 4, h in H of 4,
The crisp set Pn generated from P by h has bivalent membership function
Xpn —> {1, 0}, where Xpn(x) = 1 iff h(Px) = tand in this case x € P, and where
Xph(x) = 0 iff h(Px) = f and in this case x & Ph.

So truth-value assignments by h to Px thus generate a bivalent membership
function defining crisp set Pn. The truth of a predicate proposition Px
corresponds to value 1 of Xpy, and the membership of x in the set while the
falsity of Px corresponds to value 0 and exclusion of x from the set.

Zadeh, in the 1960’s, introduced new “fuzzy sets” with many-valued
membership functions. By now such sets are widely used and have had much
mathematical attention. However their logical foundations remain obscure
since like many-valued logic discussed earlier, the membership-values in the
real interval [0, 1] are unexplained. Extreme values 1 and 0 may coincide
with ordinary set membership or set exclusion respectively, but the nature of
the intermediate “fuzzy” values is unexplained. These values indicate by their
proximity to the extremes how “close” they are exclusion or set membership
but they are simply assumed as primitive so their logical foundation remains
obscure.

The fact that these “fuzzy” values are intuitive adds to the mystery. A
predicate like “tall” discussed in section 5, is ordinarily imprecise. The claim
that “Tom is tall” is 0.6 true, indicates as earlier discussed that this
proposition is nearer true than false and so Tom is “tall-ish”, “more tall than
short”. In a similar way we understand “Tom is a 0.6 member of the set of tall
men” to mean that Tom is nearer membership than exclusion to this set.
However the “fuzzy” set memberships like 0.6 are not derived but simply
assumed as primitive, leaving a foundational problem for these sets. Many-
valued propositional logics including the Lukasiewicz systems have been
proposed as “fuzzy” logic expressing “fuzzy” sets, but this does not make the
foundational problem clear. For their logical values are not explained in
terms of primitives. Furthermore truth-functional connectives seem unable
to express uncertainties, failures which lead Kripke to devise alternative
“modalities”. In the logic of fuzzy sets implication is particularly problematic,
with truth-functional conditions apparently inadequate to express the “fuzzy
implications” that arise when both premise and conclusion may be
uncertain.xi
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Global logic presents a logical foundation without these problems.
Connectives are defined by multiple valuations from set H, allowing rich
contextual modalities to be expressed as discussed above. Degrees of truth
provide values for many-valued uncertain valuations (Defn 5.2), producing a
many-valued logic that is not truth-functional and is capable of expressing
probability theory as the previous sections show. The values in this logic are
not primitive but are instead derived from traditional truth-values true and
false. The logic also has a natural sense of “fuzzy” implication.

Defn 9.3: (uncertain inference =>p, uncertain set Py)
For P a predicate in language L of logic <, a, B wffs of £, valuation h in H and
relation R over H.
i) The uncertain (fuzzy) set Pra generated by P and h and R has membership
function Xprn (x) —>[1, 0], where Xprn (x) = hR(Px) = degrn(Px)For any h in H
of Z and relation R over H and h*(a) =4r degrn(ct)
ii) A new connective, uncertain inference according to R, =>y, is defined by
the many-valued valuation rule that hR (o => ) = ¢r degg, (p)

So by i) the many-valued memberships of an uncertain set are measures over
relevant truth-systems of the predicate propositions. The membership
functions of a fuzzy-set generated by predicate P, valuation h and relation R,
are degrees of truth of the corresponding predicate proposition in valuations
related by R to h. If we recall that h®(a) =¢r degrn(a) by Defn 5.2, then this is
the value of an uncertain valuation hR. By ii) the uncertain inference of § from
a according to relation R, is the degree of B according to R, given initial
condition o, a measure of the valuations related to o in which f is true.
Clearly many other different conditionals can be defined in the global logic £

An example helps to understand this generalisation from crisp to uncertain
set. Let arepresent the individual Tom, and Q the predicate “tall”, so Qa is
the proposition “Tom is tall”. According to Defn 9.2 above if Qa is true in h,
then a € Qu, “Tom is in the set of tall men according to h”. If Qa is false in h,
then a & Qn, “Tom is excluded from the set of tall men according to h”. The
global logic £ retains this relationship with crisp sets but in addition
uncertain sets can be derived from degrees of truth of these predicate
propositions. The uncertain set Qgn has many-valued membership function
Krnq expressing a contextual degree of truth of the proposition. Consider for
example the simple case of universal relation R. The membership value of
Tom in uncertain set Qu is a measure of the valuations that find Qa true. If this
is 0.6 then there is nothing “fuzzy” in this set membership because the value
has a very precise meaning: 6 out of 10 valuations of logic £ find “Tom is tall”
is true.

Contextual degrees of truth as discussed in section 5, can be generated from
semantic relations R over H. Many predicates in ordinary language like “tall”
are not precise and their truth-values depend on context, on truth-values
assigned to other propositions as well. In the earlier discussion relations
were defined among valuations according to the propositions they find true.
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Relation F was defined among valuations assigning truth-values to
propositions describing Tom'’s family for example, while B holds between
valuations assigning truth-values to propositions about basketball. Since
Tom'’s family are very short, but basketball players are tall, p = “Tom is tall” is
true more often among the valuations related by F in H, than in general, and
far more often than among valuations related by B. In our example the

the family-wise-degree-of-truth of p was 0.9, degr(p) = 0.9, compared with the
general degree of 0.6, deg(p) = 0.6, while the basketball-wise-degree-of-truth
was much lower, degg(p) = 0.3.

These relations and contextual degrees generate corresponding contextual
uncertain sets. Tom is a 0.6 member according to our definition of the
general uncertain set of tall men, while he is a 0.9 member of the family-wise-
uncertain set, of “family-wise-tall-men”. His membership in the “basketball-
wise-uncertain set of tall men” is much lower, at 0.3. Each set membership
expresses a corresponding contextual degree of truth of proposition p in the
global logic <. Relation F generates from predicate Q the family-wise
uncertain set Q¢ whose membership function assigns the contextual
uncertainties degr discussed above. Tom is a 0.9 member of this set because
his family are short, and so 9 out of 10 valuations describing his male family
find p true, though in general only 6 out of 10 valuations in H do so. His
membership in Qg the uncertain basket-ball tall men is much lower at 0.3
because only 3 out of 10 of these valuations describing men playing
basketball find p true.

Since the uncertain sets developed here have many-valued membership
functions which are the defining property of Zadeh'’s “fuzzy” sets, it seems
global logic £ may provide a foundation for these as well. The many-valued
membership functions are degrees of truth, measures of the related
valuations that find the corresponding predicate proposition true. The global
connective uncertain inference seems a likely candidate for “fuzzy
implication”, since it was proved capable in earlier sections of expressing the
conditional probabilities of classical and quantum theories. “Fuzzy logic”
then, could be the many-valued global predicate logic £ expressing degrees of
truth.

The many-valued valuations h of this predicate logic can also be expressed in
terms of corresponding crisp sets. Each valuation h in H defines a crisp set
Qn from predicate Q, where a € Qn iff h’(Qa) = t. It follows that the uncertain
set Qn can be also expressed as a measure of these crisp sets. For the
membership function of this set has values that are degrees of truth,
measures of the valuations related to h that find Qa true. This however is also
a measure of the crisp sets Qn containing a. The general membership function
Kon of uncertain set Qi tells us what many-valued h tells us, that 6 out of 10
crisp sets of tall men contain Tom.

Global logic £ has been derived only from traditional primitives of logic,

including two truth-values true and false as well as from truth-functional
connectives that express Boolean Laws of Thought. These concepts alone
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allowed the derivation of the global connectives, including the many-valued
degrees of truth and the uncertain fuzzy sets that can be derived from them.
Thus the logical values in the interval [0, 1] are not primitive but measures of
sets of propositions that are true, or of corresponding crisp sets. Fuzzy logic
is rich and intuitive and is founded on first principals of logic.

The development of logic presented here can be briefly summarised. True
and false are primitive concepts of logic, as are the traditional Boolean Laws
of thought. From these are derived set H of valuations of truth-functional
logic £, the assignments of truth-values to propositions. However from thse
truth-functional valuations a global logic of modalities is derived, that can
express sophisticated uncertainties including classical and quantum
probabilities as well as fuzzy sets. In this development only traditional
primitives are allowed, and none is rejected.

Bivalent propositional calculus is now understood as the truth-functional
logic of any context, of the truth-sets and falsity-sets of a valuation where all
propositions are assigned a truth-value. The truth-functional £ generalises
the bivalent logic by allowing truth-value “gaps”, essential if any sense of
uncertainty can be expressed. This is the truth-functional logic of a valuation
h in H. But richer than both of these truth-functional systems is the global
logic based on the set H of valuations of £. This logic can express far more
than any Kripke logic and has a far more intuitive foundation in logical first
principles. This logic can express ordinary language contextual uncertainties
and degrees of truth, as well as classical and quantum probabilities and fuzzy
sets.

Notes

I This means for any a, b in A there are elements (a A b), (a V b) in A such that the firstis a
ii See Birkhoff Latticce Theory for more.

il So named in honour of Tarski who developed it and Lindenbaum a fellow logician who was
murdered by the Nazis

IV That is we need to show for example that if y € [o] and [a] < [B], then [y] < []: this follows
from the fact thaty = a is logically true in.£ and so a. D  is logically true iff y D 3 is logically
true, and similarly for the other cases.

V' The Boolean properties follow from the valuation rules defining connectives, e.g. because
(Vv B)=(BV a)islogically equivalent in logicZ, [o V] =[fpVa]andsoaVvb=bVaie.this
operation commutes. Similarly other properties follow from those of logical connectives
establishing that # = <A, A, V, < > is a distributive lattice

viSee Garden 1984 for details

vil These results follow from the fact that logically equivalent propositions share the same
valuation relations, ie. they have the same values in any h.

vill See for example Sikorski [1969].

ix Most notably of course by Birkhoff and von Neumann who have argued that quantum logic
is not distributive, see more below and in Garden [1984]
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x| have elsewhere called these Kolmogorov measures since they are well-defined over a
Boolean field of sets, however this has caused difficulties eg. For Streater and so this
reference to Kolmogorov has been avoided here.

xi See Garden [1984] and [1992] for a detailed refutation of von Neuman'’s and Birkhoff’s
claim that distribution must fail: their argument proves only that either distribution or
Boolean negation fails, and of course we expect the latter to do so.

xii See for example the discussion in Hajek and Zadeh and Kaprzyk ed.
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